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This paper supplements the results obtained in [ 11, We consider in it some general pro- 
perties of fully developed magnetohydrodynamic flows in pipes in presence of a longitu- 
dinal electric current. Examples of exact solutions given here show, that the thickness 

of a boundary layer on the walls parallel to the direction of field, are of the order of 
M-3; where M * IS a Hartmann number. 

1 . Fully developed steady flow of an incompressible, isotropically conducting fluid 

in a pipe, was investigated previously in c-1 to 31 , It was shown that transverse distribu- 

tions of velocity U ( y, i?) and induced magnetic field b ( y, 2 ) satisfy Eqs. (1.1) 

q&+& B,_Vb=-P*, 
aP* 

v,,~b+B,_vu=O, P*r- ,z=const 

with the corresponding boundary conditions, provided that the following equalities, 

div BL = 0, 
4n: 

rot BI = 7 /,e,, 1, = cinst tl.2) 

where 3, is a specified constant, hold for a magnetic field BL(y, 2) transverse to the 

flow. Hydrodynamic pressure p = p* - B2 / 8r is given by 

(C = cold) (1.3) 

where A is vector potential of the field B1, i.e. B, = aA / +, B, = - aA / &. 

The conditions imposed on BI by (1.2) are not sufficient for the solution of (1. 1) and 

(1.3) to acquire a physical meaning. Indeed, if A is a multivalued function of y and Z, 

then the pressure p will not be singlevalued when & # 0, although the field B1 may be 
uniquely defined. Lack of uniqueness of the pressure implies that in a pipe of given 
profile another motion in the ( y, 2)-plane takes place, apart from the main flow. For 
example, in an annular pipe with a radial magnetic field and axial current, the resulting 

motion is not purely longitudinal, but always spiral (see e. & 141 ), 
Unique determination of pressure is possible if the integral of ap/aS over any closed 

contour L lying entirely within the cross section of the pipe, is equal to zero. From this, 
taking into account (1.3) and the fact that bA/ a S is proportional to the component of 
BI normal to the contour, we obtain 

B nl ds - 0 
L 

(1.4) 

Physical significance of the condition (1, 4) is obvious, Total pole strength inside the 

fluid and in the’internal cavities of the pipe, should be equal to zero. Our previous 
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example of a flow in an annular pipe contradicts this requirement, since the source of 

radial field is situated within an internal cavity. However, if the radial field is replaced 

with a homogeneous transverse field, then the condition (1.4) will be fulfilled and we 

shall be able to construct a solution to (1.1) and (1.3). Thus we can see that Eqs. (1.2) 
and (1.4) form a system of conditions necessary and sufficient for the existence of a 

fully developed flow. 
it can easily be shown that (1.1) has a simple particular solution 

CP*A 
u = const - F 

4W, 
b = const 

If the external magnetic field is such that the above expressions for velocity and the 

field satisfy all the boundary conditions, then the flow differs from the usual hydrodyna- 

mic flow only in its pressure distribution and in the appearance of an electric field. A 
flow in a nonconducting pipe of circular cross section with longitudinal current and in 

absence of other sources of magnetic field [5] is an example of such a trivial situation. 
Below we consider some nontrivial problems in which 

velocity distribution varies appreciably. 

2 , Let the current ,fX be the only source of trans- 

verse field during a flow in a pipe of circular cross 

section of radius To , so that 

%_ = eoBo, B, = 2nj,rlc, A = ni,?/c 

We shall assupe the walls of a pipe to be thin and 

ideally segmented, i. e. possessing zero conductivity 
in the X-direction and arbitrary conductivity in the 

e-direction, Then [S] (2.i) 
t(= 0, b - b*(0) = - X(e) War for ? = ro 

L-----_llzr-illI- Here b,( 0 ) is the longitudinal field outside the 

Fig. 1 
pipe and K (8 ) is the corresponding azimuthal con- 

ductivity of the wall, For example,in case of a 
channel with two arc-shaped electrodes (Fig. 1). we have 

x (0) = 0 for a<e<n- 
x (0) --, 00 

a, Ir+a<8<2n--u 
for --a<e<a, n-a<B<n+a 

$(W= (_;;:,‘,c 2; ;=“,>x, 

(2.2) 

When b, 5 0 and X (8) is finite, solution (1.5) satisfies the conditions (2.1) , provided 
that the constants are suitably selected, 

When b, f 0, we shall for simplicity assume that 

b (~0, 0) = Z+‘, (0) (2.31 
is a given function and bW (0) = bW 01) while b, (-0) = - b, (13). 

Let us now write (1.1),(2.1) and (2.3) in dimensionless variables, choosing 

as characteristic units of length, velocity and the field, and retaining the previous desig- 

nation for U and b. Then, 
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Au f MabId = - P, Ab + MBuldCt =L- o (Z.4) 

E(f, q=o, b (I, 6) = b, (8) {X 5) 

Solution of (2.4) and (2. Sj will be sought in the form 

24 = f.(l --rZ)+ i 
03 

Uk (T) co.9 Ice, b= z] bk(r)sinkO 
h’::l k=l 

f&2 -j- kZfW) “,I( = 0, (Dliz + kaMa) bk = 0 
x 

“k (2) = 0, b, (I) = PK = 6 
I 
’ b, sin lc6 01% 

--x 

(2.6) 

(2.7) 

(2.8) 

D*f+ 0) = - kM&, 
‘i d 

D,b,(l)=O, Q,=-&-s-s 

Sol’utions (2.7) and (2.8) of boundary value problems regular within the circle 0 s7” $1, 

can be expressed in terms of Thomson functions 

Velocity distribution (2.6) and (2. 9) exhibits some properties associated with flows 
under the conditions of free convection 161, e, g, mean velocity u = Y*$ / 8 g and 

the axial velocity U (0) = Zu , are independent of the Hartmann number M . 
When the function b,( 8 ) with its Fourier coefficients fik is given (this is equivalent 

to specifying a radial current Jr- 0: on the boundary), t’hen Formulas (2.6) and (2.9) 
give complete solution to the problem and (2.1) yields the connection between the cor- 
responding distributions of b,(8 ) and 32. (6 ) . If, on the other hand, b, is defined in 

terms of b,( 8 ) and U (8 ) , then (2.1) yields, for the coefficients 9 k, an infinite system 

of linear equations which can be solved by numerical methods (when K ($ ) is given in 
the form of (2,2), we have a so called prohbm on dual trigonomeFric series) 

Pl f + 5 P& (xk-l- “k+1) = ez (l== 1, 2,. . .) 

rr &==I 

q += ‘I 
ii 

‘ be ain f8 d%, 

(2.20) 

n s 
1 

%itl -== - ” 5~ cos k% d% 
z I 

-- 
Trr ss Pk-‘bk’ (1) = ” ( )/1,hkM I Ak) [ 1/2k / M Ai& bcr, I/k= bcrk_l j//kM + 

A- bei& Y’kx be&-s VkM - bei, ‘ZlkM ber,_I V%@ + bcrk VkM bei,_I fkxj (2.~1) 

A, = berkz p’% + be&a I/E% 

We shall use asymptotic representations of Thomson functions f7] 



to study the obtained solution when r/Mb> 1, and we shall transform (2. 9) and (2.11) 

into 11 k - pk j$ QSp [(r - 1) v/knrl] sin (r - 1) 1c/klM/2, 

%l- pa + 

(2.12) 

exp [(r - 1) Vkdl /z] ~0s (7 - 1) v/m, 
-- 

qk m )/kM/2 

Inspection of these formulas shows that near the wall f = 1 boundary layers (dynamic 

and electric) are formed and that their thickness decreases with increasing Hartmann 

number as FPaf 
* 

2 , provided mat flk are fixed. We also see that when M+=and when 

M+ 0, the flow tends to become an ordinary Poiseuille flow. Therefore, there exists 
some value of fl. corresponding to the greatest symmetry in the flow and tbe greatest 

value of co1 

can be taken as the measure of this asymmetry. 
Formulas (2.22) show also that periodic variation in velocity and field is possible near 

the wall of the pipe. 
Having calculated the components ia and ir of 

the current density in terms of derivatives of b and 

having investigated their asymptotic behavior at 

large M, we can easily establish that the radial com- 
ponent Jr decreases exponentially with increasing 
M, when 7 < 1 , Azimuthal component je also 

decreases in this case, but JM times slower, and at 

r = 1 , increases infinitely as JM. Thus, whenM )r, 1 

the flow narrows into a bounda~ layer and becomes 

I 
parallel to the external field. This explains its ten- 

dency to become a Poiseuille flow as M-+a, . 

Fig. 2 
3 . In the previous problem, nontriviality of the 

solution, i. e. deviation of the velocity profile from Poiseuillian was caused by the inho- 

mogeneity of longitudinal magnetic field on the boundary. Obviously, the flow will not 

be Poiseuillian under any violation of symmetry of the boundary conditions. Let us for 
exampIe assume, that a cylindrical pipe has a radial partition (Fi& 2) whose longitudinal 

conductivity is equal to that of the fluid, while the radial conductivity is infinite. Walls 

of the pipe will, for simplicity, be assumed nonconducting If the magnetic field is, as in 
Section 2, generated only by the constant current JX, then the d~~b~tio~ of velocin, 
and induced field in a ffow taking place in such a channel, are found from the solution 
of Eqs. (2.4) with the following boundary conditions 

u=b=Q far r=1, ih/ae=b=O for 8 = 0 

a?Jl’ae = 11 = 0 for 8 = Jr 71 (3.1) 
taken into account 

Putting 

we obtain 
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Let us now introduce the operators 

L, q D,;_,,, I- (k - If-) ilS-‘!‘-i, 1, - I)p_,!s f- (k --I/?) &fe3jaxi 

The relations 
(3.4) 

Writing (3.3) in the form L*Zk uk = -_ylr (k - 2!2)2~-p and remembering that the 

solution is bounded when r = 0, we obtain 

&ldk = F,Jp,Z (Ckr) m+ Zk’yk (ji - l/-2)’ s_~, k_tla (i,r) 

Lpcr = Ek/,_,,,2 (r/(r) -t qYh (k- l/d2 s-3, /+l,r Q) 

where &‘k and FL are constants, while s_~,~_,, are Lommel functions, This, together 
with the second Eq, of (3.5) yields U, which, &h (3.4) and the first Eq, of (3.5): gives 
bk , Adding the conditions (3,3), we obtain the final form 

UK = 

b, = 
Tk C Jk-‘,n (+) 

M tk -I/4 i - Re Jr_‘/, (‘;,, _ + 1 

Transition to Thomson functions and their integrals is easy, but uninteresting. Use of 
asymptotic representations of Bessel and Lommel functions [8] for F/M% 1 enables us, 
as in the previous 
of the order of M’ r 

oblem, to establish the formation of a- boundary layer of thickness 
near the wall, and to confirm the fact that the distribution of U and 

b in I” , can be nonmonotonous, 

A Hartmaan type boundary layer is formed on the partition 6 = f TT , r B 0. Its thick- 
ness carr be found from (2.4) and (3.1) by introducing a new variable 5 96 ,.negbctiag 
the derivatives in F as compared with those in 5 and obtaining a solution in its general 
form, As expected, thickness of the boundary layer is found to be of the order of (FM)? 

4, When the axial symmetry of transverse magnetic field B1 is disturbed, the result- 

ing flows are non- Poiseuillian . 
Consider e, g. the case when a homogeneous external field (here, as opposed to pre- 

vious problems, polar angle e is taken from the J/-axis) 

% = eg jZJcj&)-- e,Bo = e,& siu 8 + e, (Bo cos 0 + %j,r/c) (4.1) 
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is superimposed on the azimuthal field of the longitudinal current. Such a field satisfies 
the condition (I.ci). Corresponding developed flow in a circular pipe with nonconducting 

Fig. 3 

walls, is described by 

u(i, e)==b(i, ej (4 3) 

where G = &,c / 2n;,ro, and the remaining dimension- 

less magnitudes are the same as in Section 2, 

Lines of force of the transverse magnetic field BI 

(solid lines on Fig. 3) form a family of concentric 
cir@es with the center at the point 8 = 1T , r= C . 

As C increases from zero, the center of lines of iorce 

moves away from the center of cross section of the pipe, in the negative direction of 
the y-axis, Thus, when E -+ 5, the flow becomes Poiseuillian (see Section 1). while 

when C -_) CQ , it tends to the well known flow in a homoge~eo~ external field p and 5% 

Let us now make use of polar coordinates with their center at the point (a, n), We 

Put 
p” = ra + 2s r cos e + a’, p sin+ = r sin 6, p cas rp=r co.98 .+ 8 (4.4) 

using the variables &I and $ we obtain, from (4 2) and (4.3). a system analogous to 

(2.4) and(2.5) 
pg+EA&-P, (4‘5) 

u=b==O for p’=1--e~+2epcos~ G.6) 
Taking into account the symmetry in $ , we can write the solution of (4,s) as 

(c= $(I -PY-f 5 $IP)c~kg, b = i bk(p)sinkg (4.71 
k-1 K==l 

where Uk and bk are given by 

Dirt+ + kMbK = 0, %bk - kMU, = 0 (4.8) 
with accuracy of up to four constants for each ,k , In this manner we arrive, fuffilling 
the boundary conditions (4.6) for infinite sums (4.7), at an infinite algebraic system. 
We should note that when E c 1, then only two out of each four constants appear in the 
system. The other two are made equal to zero because of the requiremenr of regularity 

of the system as P -+ 0 (I When F: > 1, then all the constants have to be determined and 
the number of equations is doubled, since $ varies within finite limits ( I$1 < sir?l’t/C.)) 
and two values of P correspond to each value of $ . 

Let us limit ourselves to the case 6 < 1 and derive for it the algebraic system men- 
tioned above. We shall utilize the solution of Eqs. {4, 81, which has the for& 

“k (p) = EkJk b&p) -+ “kJk f7kf”). b, b) = - iekj;, (zkp) f iF,J, t&j) IW 
Tk = e 

+YkX 

together with relations 
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S===k ( i. : 0) 

oosk+L c esrk--*ki 
Pk S==O s! fk - s)! 

cos (k - sj e t sin (k - s) 0 

and the Gegenbauer formula 

J, @,d 
00 

(r,dk 
=9 x (ki_Z) Jk+t @-) &+l (--- =k) s-2: (cm 0) (4.11) 

I=0 (IkrT (- a~,)~ 

iJ,k (p) =L -&l f- “‘“r-a~~;~;j~;- 19 Pr-2j 

j=O 
. I 

Inserting (41.9) to (4.11) into series (4. 7), puttihg r = 1 , U = 0 and b = 0 and multi- 

plying respectively by cosm 6 and sin A?. 6 we obtain, on integration from -li to TT , an 
infinite system inEk and Fk 

x ~VJ 
5 5 (AalEk+‘;I,tF,) x x P(k,z,s,j)[J(lk--s--ml, j--%1+ (4.12) 

R=l t-0 s=o j=o 
+J(k-s+3-m, r--2jj]=a,P 

5 i (At+% 

L <%I 
- &Fk) 2 2 P (k, I, s, i) [J ( 1 k - 8 - m 1, 1- Zi) - 

k==li=-a s=o f=O 
-J(k-s+m, I---Zj)] ==o 

P (k I, 8, il= 
(- l)j2’-ai+ka8(k + I - i - 1)1 kl (k + I) 

’ Akt ^- 

Jk+l ($j J&i (- ez,) 

(I -22j)l jl sl (k - s)! (- =y)* 

I 4(4--I)* 
Jh4)= 24 

*.(P----h$-1) 
hf for 4 - p=ZX>O fp, Q are whole 

numbers 
J (P1 4) = 0 for p>pandfor q-_p=2h--l>0 

(m = 0, 1,2,3 . . ., a0 = 1/2e2rc, aI = ?&x, a2 = ail = - s - = 0) 

Obviously, when & -) 0, the right-hand sides vanish and we have a trivial solution 

EIL = Fk = 0 which has, according to (4,7), a corresponding Poiseuille flow. 

System (4.12) becomes somewhat simpler when E -+ P-0 I when the center of the lines 
of force approaches the wall of the pipe. It can be written as 

m=0,1,2,. *., a0 = af =l/2n, a2=:as=.*.=Q 

When values of C are small and C ,fM 4: 1, we can construct a solution in form of a 
series in powers %f E l E& (4.9) and the system (4. f2) then yield, with accuracy of up 

to the order of e I 



in higher approximations this symmetry disappears. 
A complex pattern of currents in the cross section of the pipe is shown schematically 

on Fig, 3 with broken lines. Direction of circulation is given by the highest e. m. f. (in 
the present case the e. m, f. when y > - S) and the current density by the difference of 

absolute values of e. m. f. at &/ > - c and jj < - IZ . As c I) 0, that difference also tends 

to zero and the current disappears. Although the magnetic field is not homogeneous 

when 8 < 1 , current loops do not show any singularities when compared with the case of 

a homogeneous field 15% At large Hartmann numbers a boundary layer is formed near 

the wall, in which the current loops are-closed, while at the center the direction is radial. 

Near the point ( c , TT) a region ( r-M 2, appears, where the e. m. f. is small and current 
flows in the 1/-direction. For small Hartmann numbers, this region becomes a circum- 
ference of radius r% j/3 , These facts are easily established by considering the asymp- 

totic behavior of the solution (4.3) at the small and large values of M. 
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